DeepMarks: A Digital Fingerprinting Framework for Deep Neural Networks

DeepMarks: A Digital Fingerprinting Framework for Deep Neural Networks

  • April 10, 2018
Table of Contents

DeepMarks: A Digital Fingerprinting Framework for Deep Neural Networks

DeepMarks introduces the first fingerprinting methodology that enables the model owner to embed unique fingerprints within the parameters (weights) of her model and later identify undesired usages of her distributed models. The proposed framework embeds the fingerprints in the Probability Density Function (pdf) of trainable weights by leveraging the extra capacity available in contemporary DL models. DeepMarks is robust against fingerprints collusion as well as network transformation attacks, including model compression and model fine-tuning.

Source: iacr.org

Tags :
Share :
comments powered by Disqus

Related Posts

Lessons Learned Reproducing a Deep Reinforcement Learning Paper

Lessons Learned Reproducing a Deep Reinforcement Learning Paper

There are a lot of neat things going on in deep reinforcement learning. One of the coolest things from last year was OpenAI and DeepMind’s work on training an agent using feedback from a human rather than a classical reward signal. There’s a great blog post about it at Learning from Human Preferences, and the original paper is at Deep Reinforcement Learning from Human Preferences.

Read More
AlterEgo: Interfacing with devices through silent speech

AlterEgo: Interfacing with devices through silent speech

AlterEgo is a closed-loop, non-invasive, wearable system that allows humans to converse in high-bandwidth natural language with machines, artificial intelligence assistants, services, and other people without any voice—without opening their mouth, and without any discernible movements—simply by vocalizing internally.

Read More