Differentiable Plasticity: A New Method Learning to Learn
Neural networks, which underlie many of Uber’s machine learning systems, have proven highly successful in solving complex problems, including image recognition, language understanding, and game-playing. However, these networks are usually trained to a stopping point through gradient descent, which incrementally adjusts the connections of the network based on its performance over many trials. Once the training is complete, the network is fixed and the connections can no longer change; as a result, barring any later re-training (again requiring many examples), the network in effect stops learning at the moment training ends.
Source: uber.com