Facebook’s Field Guide to Machine Learning video series

Facebook’s Field Guide to Machine Learning video series

  • May 9, 2018
Table of Contents

Facebook’s Field Guide to Machine Learning video series

The Facebook Field Guide to Machine Learning is a six-part video series developed by the Facebook ads machine learning team. The series shares best real-world practices and provides practical tips about how to apply machine-learning capabilities to real-world problems. Machine learning and artificial intelligence are in the headlines everywhere today, and there are many resources to teach you about how the algorithms work and demonstrations of the latest cutting-edge research.

However, if you’re interested in using machine learning to enhance your product in the real world, it’s important to understand how the entire development process works. It’s not only what happens during the training of your models, but everything that comes before and after, and how each step can either set you up for success or doom you to fail. The Facebook ads machine learning team has developed a series of videos to help engineers and new researchers learn to apply their machine learning skills to real-world problems.

The series breaks down the machine learning process into six steps:

Source: fb.com

Share :
comments powered by Disqus

Related Posts

Cutting Edge Deep Learning for Coders, Part 2

Cutting Edge Deep Learning for Coders, Part 2

Welcome to the new 2018 edition of fast.ai’s second 7 week course, Cutting Edge Deep Learning For Coders, Part 2, where you’ll learn the latest developments in deep learning, how to read and implement new academic papers, and how to solve challenging end-to-end problems such as natural language translation. You’ll develop a deep understanding of neural network foundations, the most important recent advances in the fields, and how to implement them in the world’s fastest deep learning libraries, fastai and pytorch. This course contains all new material, so if you’ve already completed the 2017 version, you’ll find plenty here to keep you busy too!

Read More
So what’s new in AI?

So what’s new in AI?

I graduated with a degree in AI when the cost of the equivalent computational power to an iPhone was $50 million. A lot has changed but surprisingly much is still the same.

Read More