Deep Learning Research: Creating Adaptable Meta-Learning Models

Deep Learning Research: Creating Adaptable Meta-Learning Models

  • May 24, 2018
Table of Contents

Deep Learning Research: Creating Adaptable Meta-Learning Models

Adaptability is one of the key cognitive abilities that defined us as humans. Even as babies, we can intuitively shift between similar tasks even if we don’t have prior training on them. This contrasts with the traditional train-and-test approach of most artificial intelligence(AI) systems which require an agent to go through massive amounts of training before it can master a specific task.

By definition, train-and-test systems are not very adaptable and, consequently, they are not very applicable to scenarios that operate in real word environments. Improving the adaptability of AI systems has been one of the core areas of research of an increasingly popular discipline known as meta-learning that focuses on improving the learning abilities of AI agents. In neuroscience literature, cognitive flexibility or adaptability is commonly ascribed to prefrontal cortex (PFC) and working memory in the brain.

Neuroscientific evidence suggests that these areas use incoming information to support task-specific temporal adaptation and planning. Recently, researchers from the Microsoft AI lab in Montreal published a research paper that mimics some of these neuroscientific principles in a new technique known as cognitive shifted neurons(CSN).

Source: towardsdatascience.com

Tags :
Share :
comments powered by Disqus

Related Posts

Crossbar Pushes Resistive RAM into Embedded AI

Crossbar Pushes Resistive RAM into Embedded AI

Resistive RAM technology developer Crossbar says it has inked a deal with aerospace chip maker Microsemi allowing the latter to embed Crossbar’s nonvolatile memory on future chips. The move follows selection of Crossbar’s technology by a leading foundry for advanced manufacturing nodes. Crossbar is counting on resistive RAM (ReRAM) to enable artificial intelligence systems whose neural networks are housed within the device rather than in the cloud.

Read More
Tensor Compilers: Comparing PlaidML, Tensor Comprehensions, and TVM

Tensor Compilers: Comparing PlaidML, Tensor Comprehensions, and TVM

One of the most complex and performance critical parts of any machine learning framework is its support for device specific acceleration. Indeed, without efficient GPU acceleration, much of modern ML research and deployment would not be possible. This acceleration support is also a critical bottleneck, both in terms of adding support for a wider range of hardware targets (including mobile) as well as for writing new research kernels.

Read More
AI and Compute

AI and Compute

We’re releasing an analysis showing that since 2012, the amount of compute used in the largest AI training runs has been increasing exponentially with a 3.5 month-doubling time (by comparison, Moore’s Law had an 18-month doubling period). Since 2012, this metric has grown by more than 300,000x (an 18-month doubling period would yield only a 12x increase). Improvements in compute have been a key component of AI progress, so as long as this trend continues, it’s worth preparing for the implications of systems far outside today’s capabilities.

Read More