OpenAI: Gym Retro

OpenAI: Gym Retro

  • May 25, 2018
Table of Contents

OpenAI: Gym Retro

We’re releasing the full version of Gym Retro, a platform for reinforcement learning research on games. This brings our publicly-released game count from around 70 Atari games and 30 Sega games to over 1,000 games across a variety of backing emulators. We’re also releasing the tool we use to add new games to the platform.

We use Gym Retro to conduct research on RL algorithms and study generalization. Prior research in RL has mostly focused on optimizing agents to solve single tasks. With Gym Retro, we can study the ability to generalize between games with similar concepts but different appearances.

This release includes games from the Sega Genesis and Sega Master System, and Nintendo’s NES, SNES, and Game Boy consoles. It also includes preliminary support for the Sega Game Gear, Nintendo Game Boy Color, Nintendo Game Boy Advance, and NEC TurboGrafx.

Some of the released game integrations, included those games in the data/experimental folder of Gym Retro, are in a beta state — please try them out and let us know if you encounter any bugs. Due to the large scale of the changes involved the code will only be available on a branch for the time being. To avoid breaking contestants’ code we won’t be merging the branch until after the contest concludes.

Source: openai.com

Tags :
Share :
comments powered by Disqus

Related Posts

Crossbar Pushes Resistive RAM into Embedded AI

Crossbar Pushes Resistive RAM into Embedded AI

Resistive RAM technology developer Crossbar says it has inked a deal with aerospace chip maker Microsemi allowing the latter to embed Crossbar’s nonvolatile memory on future chips. The move follows selection of Crossbar’s technology by a leading foundry for advanced manufacturing nodes. Crossbar is counting on resistive RAM (ReRAM) to enable artificial intelligence systems whose neural networks are housed within the device rather than in the cloud.

Read More
Deep Learning Research: Creating Adaptable Meta-Learning Models

Deep Learning Research: Creating Adaptable Meta-Learning Models

Adaptability is one of the key cognitive abilities that defined us as humans. Even as babies, we can intuitively shift between similar tasks even if we don’t have prior training on them. This contrasts with the traditional train-and-test approach of most artificial intelligence(AI) systems which require an agent to go through massive amounts of training before it can master a specific task.

Read More