Making driverless cars change lanes more like human drivers do

Making driverless cars change lanes more like human drivers do

  • May 28, 2018
Table of Contents

Making driverless cars change lanes more like human drivers do

In the field of self-driving cars, algorithms for controlling lane changes are an important topic of study. But most existing lane-change algorithms have one of two drawbacks: Either they rely on detailed statistical models of the driving environment, which are difficult to assemble and too complex to analyze on the fly; or they’re so simple that they can lead to impractically conservative decisions, such as never changing lanes at all. At the International Conference on Robotics and Automation tomorrow, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) will present a new lane-change algorithm that splits the difference.

It allows for more aggressive lane changes than the simple models do but relies only on immediate information about other vehicles’ directions and velocities to make decisions. One standard way for autonomous vehicles to avoid collisions is to calculate buffer zones around the other vehicles in the environment. The buffer zones describe not only the vehicles’ current positions but their likely future positions within some time frame.

Planning lane changes then becomes a matter of simply staying out of other vehicles’ buffer zones. For any given method of computing buffer zones, algorithm designers must prove that it guarantees collision avoidance, within the context of the mathematical model used to describe traffic patterns. That proof can be complex, so the optimal buffer zones are usually computed in advance.

During operation, the autonomous vehicle then calls up the precomputed buffer zones that correspond to its situation. That approach depends on a mathematically efficient method of describing buffer zones, so that the collision-avoidance proof can be executed quickly. And that’s what the MIT researchers developed.

Source: mit.edu

Share :
comments powered by Disqus

Related Posts

30+ Machine Learning Resources

30+ Machine Learning Resources

For almost all machine learning projects, the main steps of the ideal solution remain same. Briefly, we all go over the steps below each and every time: Understand the dataClean up, fix the missing values, extract new features, select the best onesBuild the model, compare it with the other ones, tune hyper parameters, find out what is the right metric to evaluate your modelIterate this process over and over again until you believe you have the best solution:) Iterate this process over and over again until you believe you have the best solution:)

Read More
OpenAI: Gym Retro

OpenAI: Gym Retro

We’re releasing the full version of Gym Retro, a platform for reinforcement learning research on games. This brings our publicly-released game count from around 70 Atari games and 30 Sega games to over 1,000 games across a variety of backing emulators. We’re also releasing the tool we use to add new games to the platform.

Read More