AI winter is well on its way

AI winter is well on its way

  • May 30, 2018
Table of Contents

AI winter is well on its way

Deep learning has been at the forefront of the so called AI revolution for quite a few years now, and many people had believed that it is the silver bullet that will take us to the world of wonders of technological singularity (general AI). Many bets were made in 2014, 2015 and 2016 when still new boundaries were pushed, such as the Alpha Go etc. Companies such as Tesla were announcing through the mouths of their CEO’s that fully self driving car was very close, to the point that Tesla even started selling that option to customers [to be enabled by future software update].

We have now mid 2018 and things have changed. Not on the surface yet, NIPS conference is still oversold, the corporate PR still has AI all over its press releases, Elon Musk still keeps promising self driving cars and Google CEO keeps repeating Andrew Ng’s slogan that AI is bigger than electricity. But this narrative begins to crack.

And as I predicted in my older post, the place where the cracks are most visible is autonomous driving – an actual application of the technology in the real world. When the ImageNet has been effectively solved (note this does not mean that vision is solved), many prominent researchers in the field (including even typically quiet Geoff Hinton) were actively giving press interviews, publicizing stuff on social media (e.g. Yann Lecun, Andrew Ng, Fei Fei Lee to name a few). The general tone was that we are in front of a gigantic revolution and from now on things can only accelerate.

Well years have passed and the twitter feeds of those people became less active, as exemplified by Andrew Ng below:

Source: piekniewski.info

Tags :
Share :
comments powered by Disqus

Related Posts

Scanner: Processing Terabytes of Video on Hundreds of Machines

Scanner: Processing Terabytes of Video on Hundreds of Machines

There are now many state-of-the-art computer vision algorithms which are a git clone away. We found that existing systems for distributed data analysis were not well suited to dealing with the computational challenges of applying computer vision algorithms to terabyte or petabyte sized video collections, so we designed and built a system called Scanner to make efficient video analysis easier.

Read More
OpenAI: Gym Retro

OpenAI: Gym Retro

We’re releasing the full version of Gym Retro, a platform for reinforcement learning research on games. This brings our publicly-released game count from around 70 Atari games and 30 Sega games to over 1,000 games across a variety of backing emulators. We’re also releasing the tool we use to add new games to the platform.

Read More