Training a neural network in phase-change memory beats GPUs

Training a neural network in phase-change memory beats GPUs

  • June 8, 2018
Table of Contents

Training a neural network in phase-change memory beats GPUs

Compared to a typical CPU, a brain is remarkably energy-efficient, in part because it combines memory, communications, and processing in a single execution unit, the neuron. A brain also has lots of them, which lets it handle lots of tasks in parallel. Attempts to run neural networks on traditional CPUs run up against these fundamental mismatches.

Only a few things can be executed at a time, and shuffling data to memory is a slow process. As a result, neural networks have tended to be both computationally and energy intensive. A few years back, IBM announced a new processor design that was a bit closer to a collection of neurons and could execute neural networks far more efficiently.

But this didn’t help much with training the networks in the first place. Now, IBM is back with a hardware design that’s specialized for training neural networks. And it does this in part by directly executing the training in a specialized type of memory.

Phase-change memory is based on materials that can form two different structures, or phases, depending on how quickly they cool from a liquid. As the conductance of these phases differ, it’s possible to use this to store bits. It’s also possible to control the temperature such that the bit enters a state with intermediate conductance.

In addition to storing bits, this can be used to perform calculations, as a bunch of sub-threshold phase changes can gradually add up to a bit flip.

Source: arstechnica.com

Tags :
Share :
comments powered by Disqus

Related Posts

30+ Machine Learning Resources

30+ Machine Learning Resources

For almost all machine learning projects, the main steps of the ideal solution remain same. Briefly, we all go over the steps below each and every time: Understand the dataClean up, fix the missing values, extract new features, select the best onesBuild the model, compare it with the other ones, tune hyper parameters, find out what is the right metric to evaluate your modelIterate this process over and over again until you believe you have the best solution:) Iterate this process over and over again until you believe you have the best solution:)

Read More
OpenAI: Gym Retro

OpenAI: Gym Retro

We’re releasing the full version of Gym Retro, a platform for reinforcement learning research on games. This brings our publicly-released game count from around 70 Atari games and 30 Sega games to over 1,000 games across a variety of backing emulators. We’re also releasing the tool we use to add new games to the platform.

Read More