Why do neural networks generalize so poorly?

Why do neural networks generalize so poorly?

  • June 13, 2018
Table of Contents

Why do neural networks generalize so poorly?

Deep convolutional network architectures are often assumed to guarantee generalization for small image translations and deformations. In this paper we show that modern CNNs (VGG16, ResNet50, and InceptionResNetV2) can drastically change their output when an image is translated in the image plane by a few pixels, and that this failure of generalization also happens with other realistic small image transformations. Furthermore, the deeper the network the more we see these failures to generalize.

We show that these failures are related to the fact that the architecture of modern CNNs ignores the classical sampling theorem so that generalization is not guaranteed. We also show that biases in the statistics of commonly used image datasets makes it unlikely that CNNs will learn to be invariant to these transformations. Taken together our results suggest that the performance of CNNs in object recognition falls far short of the generalization capabilities of humans.

Source: arxiv.org

Tags :
Share :
comments powered by Disqus

Related Posts

Horovod: Distributed Training Framework for TensorFlow, Keras, and PyTorch

Horovod: Distributed Training Framework for TensorFlow, Keras, and PyTorch

Horovod is a distributed training framework for TensorFlow, Keras, and PyTorch. The goal of Horovod is to make distributed Deep Learning fast and easy to use.

Read More
Training a neural network in phase-change memory beats GPUs

Training a neural network in phase-change memory beats GPUs

Compared to a typical CPU, a brain is remarkably energy-efficient, in part because it combines memory, communications, and processing in a single execution unit, the neuron. A brain also has lots of them, which lets it handle lots of tasks in parallel. Attempts to run neural networks on traditional CPUs run up against these fundamental mismatches.

Read More
Intel AI Lab open-sources library for deep learning-driven NLP

Intel AI Lab open-sources library for deep learning-driven NLP

The Intel AI Lab has open-sourced a library for natural language processing to help researchers and developers give conversational agents like chatbots and virtual assistants the smarts necessary to function, such as name entity recognition, intent extraction, and semantic parsing to identify the action a person wants to take from their words. The first-ever conference by Intel for AI developers is being held Wednesday and Thursday, May 23 and 24, at the Palace of Fine Arts in San Francisco. The Intel AI Lab now employs about 40 data scientists and researchers and works with divisions of the company developing products like the nGraph framework and hardware like Nervana Neural Network chips, Liu said.

Read More