Don’t Learn TensorFlow! Start with Keras or PyTorch Instead

Don’t Learn TensorFlow! Start with Keras or PyTorch Instead

  • June 29, 2018
Table of Contents

Don’t Learn TensorFlow! Start with Keras or PyTorch Instead

So, you want to learn deep learning? Whether you want to start applying it to your business, base your next side project on it, or simply gain marketable skills – picking the right deep learning framework to learn is the essential first step towards reaching your goal. We strongly recommend that you pick either Keras or PyTorch.

These are powerful tools that are enjoyable to learn and experiment with. We know them both from the teacher’s and the student’s perspective. Piotr has delivered corporate workshops on both, while Rafał is currently learning them.

Keras and PyTorch are open-source frameworks for deep learning gaining much popularity among data scientists. Keras is a high-level API capable of running on top of TensorFlow, CNTK, Theano, or MXNet (or as tf.contrib within TensorFlow). Since its initial release in March 2015, it has gained favor for its ease of use and syntactic simplicity, facilitating fast development.

It’s supported by Google. PyTorch, released in October 2016, is a lower-level API focused on direct work with array expressions. It has gained immense interest in the last year, becoming a preferred solution for academic research, and applications of deep learning requiring optimizing custom expressions.

It’s supported by Facebook. Keras is a high-level API capable of running on top of TensorFlow, CNTK, Theano, or MXNet (or as tf.contrib within TensorFlow). Since its initial release in March 2015, it has gained favor for its ease of use and syntactic simplicity, facilitating fast development.

It’s supported by Google. PyTorch, released in October 2016, is a lower-level API focused on direct work with array expressions. It has gained immense interest in the last year, becoming a preferred solution for academic research, and applications of deep learning requiring optimizing custom expressions.

It’s supported by Facebook.

Source: deepsense.ai

Tags :
Share :
comments powered by Disqus

Related Posts

Attacks against machine learning – an overview

Attacks against machine learning – an overview

At a high level, attacks against classifiers can be broken down into three types: Adversarial inputs, which are specially crafted inputs that have been developed with the aim of being reliably misclassified in order to evade detection. Adversarial inputs include malicious documents designed to evade antivirus, and emails attempting to evade spam filters. Data poisoning attacks, which involve feeding training adversarial data to the classifier.

Read More
Improving Language Understanding with Unsupervised Learning

Improving Language Understanding with Unsupervised Learning

We’ve obtained state-of-the-art results on a suite of diverse language tasks with a scalable, task-agnostic system, which we’re also releasing. Our approach is a combination of two existing ideas: transformers and unsupervised pre-training. These results provide a convincing example that pairing supervised learning methods with unsupervised pre-training works very well; this is an idea that many have explored in the past, and we hope our result motivates further research into applying this idea on larger and more diverse datasets.

Read More
Intel’s New Path to Quantum Computing

Intel’s New Path to Quantum Computing

Intel’s director of quantum hardware, Jim Clarke, explains the company’s two quantum computing technologies The limits of Tangle Lake’s technology Silicon spin qubits and how far away they are The importance of cryogenic control electronics Top quantum computing applications What problems keeps him up at night AI vs. Quantum Computing: which will be more important? IEEE Spectrum: What’s special about Tangle Lake?

Read More