Implementing the Netflix Media Database

Implementing the Netflix Media Database

  • December 15, 2018
Table of Contents

Implementing the Netflix Media Database

In the previous blog posts in this series, we introduced the Netflix Media DataBase (NMDB) and its salient “Media Document” data model. In this post we will provide details of the NMDB system architecture beginning with the system requirements—these will serve as the necessary motivation for the architectural choices we made. A fundamental requirement for any lasting data system is that it should scale along with the growth of the business applications it wishes to serve.

NMDB is built to be a highly scalable, multi-tenant, media metadata system that can serve a high volume of write/read throughput as well as support near real-time queries. At any given time there could be several applications that are trying to persist data about a media asset (e.g., image, video, audio, subtitles) and/or trying to harness that data to solve a business problem. Some of the essential elements of such a data system are (a) reliability and availability—under varying load conditions as well as a wide variety of access patterns; (b) scalability—persisting and serving large volumes of media metadata and scaling in the face of bursty requests to serve critical backend systems like media encoding, (c) extensibility—supporting a demanding list of features with a growing list of Netflix business use cases, and (d) consistency—data access semantics that guarantee repeatable data read behavior for client applications.

The following section enumerates the key traits of NMDB and how the design aims to address them.

Source: medium.com

Share :
comments powered by Disqus

Related Posts

Sessionizing Uber Trips in Real Time

Sessionizing Uber Trips in Real Time

Uber’s many data flows required modeling the data associated with a specific task, such as a rider trip, into a state machine. The state machine lets engineers focus on just the events needed to successfully accomplish a trip. In one sense, Uber’s challenge of efficiently matching riders and drivers in the real world comes down to the question of how to collect, store, and logically arrange data.

Read More
Scaling Cash Payments in Uber Eats

Scaling Cash Payments in Uber Eats

This article is the fourth in a series covering how Uber’s mobile engineering team developed the newest version of our driver app, codenamed Carbon, a core component of our ridesharing business. Among other new features, the app lets our population of over three million driver-partners find fares, get directions, and track their earnings. We began designing the new app in conjunction with feedback from our driver-partners in 2017 and began rolling it out for production in September 2018.

Read More