How IBM Watson Overpromised and Underdelivered on AI Health Care

How IBM Watson Overpromised and Underdelivered on AI Health Care

  • April 4, 2019
Table of Contents

How IBM Watson Overpromised and Underdelivered on AI Health Care

In 2014, IBM opened swanky new headquarters for its artificial intelligence division, known as IBM Watson. Inside the glassy tower in lower Manhattan, IBMers can bring prospective clients and visiting journalists into the “immersion room,” which resembles a miniature planetarium. There, in the darkened space, visitors sit on swiveling stools while fancy graphics flash around the curved screens covering the walls.

It’s the closest you can get, IBMers sometimes say, to being inside Watson’s electronic brain. One dazzling 2014 demonstration of Watson’s brainpower showed off its potential to transform medicine using AI—a goal that IBM CEO Virginia Rometty often calls the company’s moon shot. In the demo, Watson took a bizarre collection of patient symptoms and came up with a list of possible diagnoses, each annotated with Watson’s confidence level and links to supporting medical literature.

Within the comfortable confines of the dome, Watson never failed to impress: Its memory banks held knowledge of every rare disease, and its processors weren’t susceptible to the kind of cognitive bias that can throw off doctors. It could crack a tough case in mere seconds. If Watson could bring that instant expertise to hospitals and clinics all around the world, it seemed possible that the AI could reduce diagnosis errors, optimize treatments, and even alleviate doctor shortages—not by replacing doctors but by helping them do their jobs faster and better.

Source: ieee.org

Tags :
Share :
comments powered by Disqus

Related Posts

Machine Learning-Powered Search Ranking of Airbnb Experiences

Machine Learning-Powered Search Ranking of Airbnb Experiences

How we built and iterated on a machine learning Search Ranking platform for a new two-sided marketplace and how we helped itgrow. Airbnb Experiences are handcrafted activities designed and led by expert hosts that offer a unique taste of local scene and culture. Each experience is vetted for quality by a team of editors before it makes its way onto the platform.

Read More
AI Blueprints: Implementing content-based recommendations using Python

AI Blueprints: Implementing content-based recommendations using Python

In this article, we’ll have a look at how you can implement a content-based recommendation system using Python and the scikit-learn library. But before diving straight into this, it’s important to have some prerequisite knowledge of the different ways by which recommendation systems can recommend an item to users. Content-based: A content-based recommendation finds similar items to a given item by examining the item’s properties, such as its title or description, category, or dependencies on other items (for example, electronic toys require batteries).

Read More