How to run evolution strategies on Google Kubernetes Engine

How to run evolution strategies on Google Kubernetes Engine

  • June 28, 2019
Table of Contents

How to run evolution strategies on Google Kubernetes Engine

Reinforcement learning (RL) has become popular in the machine learning community as more and more people have seen its amazing performance in games, chess and robotics. In previous blog posts we’ve shown you how to run RL algorithms on AI Platform utilizing both Google’s powerful computing infrastructure and intelligently managed training service such as Bayesian hyperparameter optimization. In this blog, we introduce Evolution Strategies (ES) and show how to run ES algorithms on Google Kubernetes Engine (GKE).

Evolution Strategies are an optimization technique based on ideas of evolution. Recently, ES has been shown (i.e. 1, 2) to be a good alternative for RL at tackling various challenging tasks. Specifically, two of the well known benefits of ES are bypassing noisy gradient estimate for policy optimization and its nature of encouraging distributed computing that brings faster convergence.

While ES, first developed in the ‘60s, have the benefit of ease of scalability, only recently did open source projects (i.e. Salimans et al. 2007) in the research community demonstrate that scaling ES to a large number of machines can achieve results competitive to SOTA RL algorithms. As a result, an increasing number of deep learning researchers have been exploring ways to incorporate evolution-based algorithms into recent research (i.e. 1, 2, 3, 4, 5).

Source: google.com

Tags :
Share :
comments powered by Disqus

Related Posts

Hash Your Way To a Better Neural Network

Hash Your Way To a Better Neural Network

The computer industry has been busy in recent years trying to figure out how to speed up the calculations needed for artificial neural networks—either for their training or for what’s known as inference, when the network is performing its function. In particular, much effort has gone into designing special-purpose hardware to run such computations. Google, for example, developed its Tensor Processing Unit, or TPU, first described publicly in 2016.

Read More
Releasing Pythia for vision and language multimodal AI models

Releasing Pythia for vision and language multimodal AI models

Pythia is a deep learning framework that supports multitasking in the vision and language domain. Built on our open-source PyTorch framework, the modular, plug-and-play design enables researchers to quickly build, reproduce, and benchmark AI models. Pythia is designed for vision and language tasks, such as answering questions related to visual data and automatically generating image captions.

Read More