Three Approaches to Scaling Machine Learning with Uber Seattle Engineering

Three Approaches to Scaling Machine Learning with Uber Seattle Engineering

  • September 14, 2019
Table of Contents

Three Approaches to Scaling Machine Learning with Uber Seattle Engineering

Uber’s services require real-world coordination between a wide range of customers, including driver-partners, riders, restaurants, and eaters. Accurately forecasting things like rider demand and ETAs enables this coordination, which makes our services work as seamlessly as possible. In an effort to constantly optimize our operations, serve our customers, and train our systems to perform better and better, we leverage machine learning (ML).

In addition, we make many of our ML tools open source, sharing them with the community to advance the state of the art. In this spirit, members of our Seattle Engineering team shared their work at an April 2019 meetup on ML and AI at Uber. Below, we highlight three different approaches Uber Seattle Engineering is currently working on to improve our ML ecosystem and that of the tech community at large.

During his talk, senior software engineer Travis Addair, from the ML Platform team, describes the power of deep learning and explains how Horovod, an open source deep learning framework built at Uber, helps facilitate this important function, especially when used with Apache Spark. As a distributed training platform, Horovod allows companies to scale their ML to hundreds of machines. Horovod’s unique abstracted framework also helps infrastructure professionals and ML engineers focus on doing their best work without stepping on each other’s digital toes.

Travis details how Horovod’s deep learning systems work and demonstrates why NVIDIA, Amazon, Alibaba, ORNL, and other major players are using it for their own ML platforms.

Source: uber.com

Tags :
Share :
comments powered by Disqus

Related Posts

Teaching Computers to Answer Complex Questions

Teaching Computers to Answer Complex Questions

Computerized question-answering systems usually take one of two approaches. Either they do a text search and try to infer the semantic relationships between entities named in the text, or they explore a hand-curated knowledge graph, a data structure that directly encodes relationships among entities. With complex questions, however — such as “Which Nolan films won an Oscar but missed a Golden Globe?” — both of these approaches run into difficulties.

Read More
Deep probabilistic modelling with Pyro

Deep probabilistic modelling with Pyro

Classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty. The success of deep neural networks in diverse areas as image recognition and natural language processing has been outstanding in recent years. However, classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty.

Read More
Introducing LCA: Loss Change Allocation for Neural Network Training

Introducing LCA: Loss Change Allocation for Neural Network Training

Neural networks (NNs) have become prolific over the last decade and now power machine learning across the industry. At Uber, we use NNs for a variety of purposes, including detecting and predicting object motion for self-driving vehicles, responding more quickly to customers, and building better maps. While many NNs perform quite well at their tasks, networks are fundamentally complex systems, and their training and operation is still poorly understood.

Read More