An introduction to audio processing and machine learning using Python

An introduction to audio processing and machine learning using Python

  • October 5, 2019
Table of Contents

An introduction to audio processing and machine learning using Python

The pyAudioProcessing library classifies audio into different categories and genres. At a high level, any machine learning problem can be divided into three types of tasks: data tasks (data collection, data cleaning, and feature formation), training (building machine learning models using data features), and evaluation (assessing the model). Features, defined as ‘individual measurable propert[ies] or characteristic[s] of a phenomenon being observed,’ are very useful because they help a machine understand the data and classify it into categories or predict a value.

Source: opensource.com

Tags :
Share :
comments powered by Disqus

Related Posts

Powered by AI: Oculus Insight

Powered by AI: Oculus Insight

To unlock the full potential of virtual reality (VR) and augmented reality (AR) experiences, the technology needs to work anywhere, adapting to the spaces where people live and how they move within those real-world environments. When we developed Oculus Quest, the first all-in-one, completely wire-free VR gaming system, we knew we needed positional tracking that was precise, accurate, and available in real time — within the confines of a standalone headset, meaning it had to be compact and energy efficient. At last year’s Oculus Connect event we shared some details about Oculus Insight, the cutting-edge technology that powers both Quest and Rift S. Now that both of those products are available, we’re providing a deeper look at the AI systems and techniques that power this VR technology.

Read More
Deep probabilistic modelling with Pyro

Deep probabilistic modelling with Pyro

Classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty. The success of deep neural networks in diverse areas as image recognition and natural language processing has been outstanding in recent years. However, classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty.

Read More