The Effects of Mixing Machine Learning and Human Judgment

The Effects of Mixing Machine Learning and Human Judgment

  • October 5, 2019
Table of Contents

The Effects of Mixing Machine Learning and Human Judgment

In 1997 IBM’s Deep Blue software beat the World Chess Champion Garry Kasparov in a series of six matches. Since then, other programs have beaten human players in games ranging from Jeopardy to Go. Inspired by his loss, Kasparov decided in 2005 to test the success of Human+AI pairs in an online chess tournament.2

He found that the Human+AI team bested the solo human. More surprisingly, he also found that the Human+AI team bested the solo computer, even though the machine outperformed humans. We decided to investigate this type of collaboration between humans and machines using risk-assessment algorithms as a case study.

In particular, we looked at the COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) algorithm, a well-known (perhaps infamous) risk-prediction system, and its effect on human decisions about risk. Many state courts use algorithms such as COMPAS to predict defendants’ risk of recidivism, and these results inform bail, sentencing, and parole decisions. Prior work on risk-assessment algorithms has focused on their accuracy and fairness, but it has not addressed their interactions with human decision makers who serve as the final arbitrators.

In one study from 2018, Julia Dressel and Hany Farid compared risk assessments from the COMPAS software and Amazon Mechanical Turk workers, and found that the algorithm and the humans achieved similar levels of accuracy and fairness.6 This study signals an important shift in the literature on risk-assessment instruments by incorporating human subjects to contextualize the accuracy and fairness of the algorithms. Dressel and Farid’s study, however, divorces the human decision makers and the algorithm when, in fact, the current model indicates that humans and algorithms would work in tandem.

Source: acm.org

Tags :
Share :
comments powered by Disqus

Related Posts

Powered by AI: Oculus Insight

Powered by AI: Oculus Insight

To unlock the full potential of virtual reality (VR) and augmented reality (AR) experiences, the technology needs to work anywhere, adapting to the spaces where people live and how they move within those real-world environments. When we developed Oculus Quest, the first all-in-one, completely wire-free VR gaming system, we knew we needed positional tracking that was precise, accurate, and available in real time — within the confines of a standalone headset, meaning it had to be compact and energy efficient. At last year’s Oculus Connect event we shared some details about Oculus Insight, the cutting-edge technology that powers both Quest and Rift S. Now that both of those products are available, we’re providing a deeper look at the AI systems and techniques that power this VR technology.

Read More
Speak to me: How voice commerce is revolutionizing commerce

Speak to me: How voice commerce is revolutionizing commerce

We’ve seen profound advances in technology, especially with the development of artificial intelligence and deep learning which are increasingly for voice assistants. This, in turn, promises to bring about huge changes in consumer behavior — what’s being called “voice commerce”. This is a new channel, governed by a new set of rules.

Read More
Deep probabilistic modelling with Pyro

Deep probabilistic modelling with Pyro

Classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty. The success of deep neural networks in diverse areas as image recognition and natural language processing has been outstanding in recent years. However, classical machine learning and deep learning algorithms can only propose the most probable solutions and are not able to adequately model uncertainty.

Read More