IBM will no longer offer, develop, or research facial recognition technology

IBM will no longer offer, develop, or research facial recognition technology

  • June 9, 2020
Table of Contents

IBM will no longer offer, develop, or research facial recognition technology

IBM will no longer offer general purpose facial recognition or analysis software, IBM CEO Arvind Krishna said in a letter to Congress today. The company will also no longer develop or research the technology, IBM tells The Verge. Krishna addressed the letter to Sens. Cory Booker (D-NJ) and Kamala Harris (D-CA) and Reps.

Karen Bass (D-CA), Hakeem Jeffries (D-NY), and Jerrold Nadler (D-NY). Facial recognition software has improved greatly over the last decade thanks to advances in artificial intelligence. At the same time, the technology — because it is often provided by private companies with little regulation or federal oversight — has been shown to suffer from bias along lines of age, race, and ethnicity, which can make the tools unreliable for law enforcement and security and ripe for potential civil rights abuses.

In 2018, research by Joy Buolamwini and Timnit Gebru revealed for the first time the extent to which many commercial facial recognition systems (including IBM’s) were biased. This work and the pair’s subsequent studies led to mainstream criticism of these algorithms and ongoing attempts to rectify bias.

Source: theverge.com

Tags :
Share :
comments powered by Disqus

Related Posts

The Hateful Memes AI Challenge

The Hateful Memes AI Challenge

We’ve built and are now sharing a data set designed specifically to help AI researchers develop new systems to identify multimodal hate speech. This content combines different modalities, such as text and images, making it difficult for machines to understand. The Hateful Memes data set contains 10,000+ new multimodal examples created by Facebook AI.

Read More
The Dark Secrets Of BERT

The Dark Secrets Of BERT

BERT stands for Bidirectional Encoder Representations from Transformers. This model is basically a multi-layer bidirectional Transformer encoder(Devlin, Chang, Lee, & Toutanova, 2019), and there are multiple excellent guides about how it works generally, includingthe Illustrated Transformer. What we focus on is one specific component of Transformer architecture known as self-attention.

Read More