Swift for TensorFlow

Swift for TensorFlow

  • April 2, 2018
Table of Contents

Swift for TensorFlow

Swift for TensorFlow is a result of first-principles thinking applied to machine learning frameworks, and works quite differently than existing TensorFlow language bindings. Whereas prior solutions are designed within the constraints of what can be achieved by a (typically Python or Lua) library, Swift for TensorFlow is based on the belief that machine learning is important enough to deserve first-class language and compiler support.

Source: tensorflow.org

Share :
comments powered by Disqus

Related Posts

Project Clara: NVIDIA Supercomputing Platform Redefines Medical Imaging

Project Clara: NVIDIA Supercomputing Platform Redefines Medical Imaging

NVIDIA’s Project Clara, a medical imaging supercomputer, renews the capabilities of these machines in place. Unveiled this week at the GPU Technology Conference, in Silicon Valley, Project Clara takes advantage of incredible advancements in computation.

Read More
Deploy TensorFlow models

Deploy TensorFlow models

Don’t follow the TensorFlow docs since they explain how to setup a docker image and compile TF serving that takes forever. We can do much better. Some guy made a docker image with everything already compile on it, so we are going to use that one.

Read More
Kaggle Tensorflow Speech Recognition Challenge

Kaggle Tensorflow Speech Recognition Challenge

From November 2017 to January 2018 the Google Brain team hosted a speech recognition challenge on Kaggle. The goal of this challenge was to write a program that can correctly identify one of 10 words being spoken in a one-second long audio file. Having just made up my mind to start seriously studying data science with the goal of turning a new corner in my career, I decided to tackle this as my first serious kaggle challenge.

Read More