Tensorflow 2.0: models migration and new design

Tensorflow 2.0: models migration and new design

  • November 5, 2018
Table of Contents

Tensorflow 2.0: models migration and new design

Tensorflow 2.0 will be a major milestone for the most popular machine learning framework: lots of changes are coming, and all with the aim of making ML accessible to everyone. These changes, however, requires for the old users to completely re-learn how to use the framework: this article describes all the (known) differences between the 1.x and 2.x version, focusing on the change of mindset required and highlighting the pros and cons of the new and implementations. This article can be a good starting point also for the novice: start thinking in the Tensorflow 2.0 way right now, so you don’t have to re-learn a new framework (unless until Tensorflow 3.0 will be released).

Tensorflow 2.0: why and when? The idea is to make Tensorflow easier to learn and apply. The first glimpse on what Tensorlow 2.0 will be has been given by Martin Wicke, one of the Google Brain Engineers, in the Announcements Mailing List, here.

In short: Eager execution will be a central feature of 2.0. It aligns users’ expectations about the programming model better with TensorFlow practice and should make TensorFlow easier to learn and apply. Support for more platforms and languages, and improved compatibility and parity between these components via standardization on exchange formats and alignment of APIs.

Source: pgaleone.eu

Share :
comments powered by Disqus

Related Posts

Curiosity and Procrastination in Reinforcement Learning

Curiosity and Procrastination in Reinforcement Learning

Episodic Curiosity through Reachability: Observations are added to memory, reward is computed based on how far the current observation is from the most similar observation in memory. The agent receives more reward for seeing observations which are not yet represented in memory.

Read More
From React Native to Flutter

From React Native to Flutter

Reflectly—From React Native toFlutterWhy we moved 500.000+ users toFlutterThe EarlyDaysReflectly was built using React Native in the summer of 2017. At the time React Native was a relatively new and exciting technology. It promised high productivity and cross-platform mobile development with familiar web technologies.

Read More
Peloton: Uber’s Unified Resource Scheduler for Diverse Cluster Workloads

Peloton: Uber’s Unified Resource Scheduler for Diverse Cluster Workloads

Cluster management, a common software infrastructure among technology companies, aggregates compute resources from a collection of physical hosts into a shared resource pool, amplifying compute power and allowing for the flexible use of data center hardware. At Uber, cluster management provides an abstraction layer for various workloads. With the increasing scale of our business, the efficient use of cluster resources becomes very important.

Read More