Faster Neural Networks Straight from JPEG

Faster Neural Networks Straight from JPEG

  • December 12, 2018
Table of Contents

Faster Neural Networks Straight from JPEG

Uber AI Labs introduces a method for making neural networks that process images faster and more accurately by leveraging JPEG representations. Neural networks, an important tool for processing data in a variety of industries, grew from an academic research area to a cornerstone of industry over the last few years. Convolutional Neural Networks (CNNs) have been particularly useful for extracting information from images, whether classifying them, recognizing faces, or evaluating board positions in Go.

At Uber, we use CNNs for an assortment of purposes, from detecting objects and predicting their motion to processing petabytes of street-level and satellite images to improve our maps. When making use of a CNN, we care about how accurately it completes its task, and in many cases, we also care about its speed. In these two examples, a network twice as fast may enable real-time detection instead of offline detection or be able to process an enormous dataset in one week of data center time instead of two.

In this article, we describe an approach presented at NeurIPS 2018 for making CNNs smaller, faster, and more accurate all at the same time by hacking libjpeg and leveraging the internal image representations already used by JPEG, the popular image format. An earlier version of this work was presented as an ICLR workshop poster in June 2018. This article will also discuss surprising insights about frequency space and color information as they relate to network architecture design.

Source: uber.com

Share :
comments powered by Disqus

Related Posts

Amazon makes its machine learning courses available for free

Amazon makes its machine learning courses available for free

Amazon announced today that it’s making its range of machine learning courses available to all developers signed up to its AWS platform for free. This program was previously available only to Amazon employees, but anyone can now take advantage of it at no charge by signing up to Amazon Web Services’ free plan. It includes 30 courses in total, with over 45 hours of course material, videos, and lab tests.

Read More
FastMRI open source tools from Facebook and NYU

FastMRI open source tools from Facebook and NYU

Facebook AI Research (FAIR) and NYU School of Medicine’s Center for Advanced Imaging Innovation and Research (CAI²R) are sharing new open source tools and data as part of fastMRI, a joint research project to spur development of AI systems to speed MRI scans by up to 10x. Today’s releases include new AI models and baselines for this task(as described in our paper here). It also includes the first large-scale MRI data set of its kind, which can serve as a benchmark for future research.

Read More