Infrastructure monitoring: Defense against surprise downtime

Infrastructure monitoring: Defense against surprise downtime

  • March 2, 2019
Table of Contents

Infrastructure monitoring: Defense against surprise downtime

Infrastructure monitoring is an integral part of infrastructure management. It is an IT manager’s first line of defense against surprise downtime. Severe issues can inject considerable downtime to live infrastructure, sometimes causing heavy loss of money and material.

Source: opensource.com

Share :
comments powered by Disqus

Related Posts

M3: Uber’s Open Source Large-Scale Metrics Platform for Prometheus

M3: Uber’s Open Source Large-Scale Metrics Platform for Prometheus

M3, Uber’s open source metrics platform for Prometheus, facilitates scalable and configurable multi-tenant storage for large-scale metrics. To facilitate the growth of Uber’s global operations, we need to be able to quickly store and access billions of metrics on our back-end systems at any given time. As part of our robust and scalable metrics infrastructure, we built M3, a metrics platform that has been in use at Uber for several years now.

Read More
Introducing Thanos: Prometheus at Scale

Introducing Thanos: Prometheus at Scale

Prometheus’s simple and reliable operational model is one of its major selling points. However, past a certain scale, we’ve identified a few shortcomings. To resolve those, we’re today officially announcing Thanos, an open source project by Improbable to seamlessly transform existing Prometheus deployments in clusters around the world into a unified monitoring system with unbounded historical data storage.

Read More
How Uber Monitors 4,000 Microservices

How Uber Monitors 4,000 Microservices

With 4,000 proprietary microservices and a growing number of open source systems that needed to be monitored, by late 2014 Uber was outgrowing its usage of Graphite and Nagios for metrics. They evaluated several technologies, including Atlas and OpenTSDB, but the fact that a growing number of open source systems were adding native support for the Prometheus Metrics Exporter format tipped the scales in that direction. Uber found with its use of Prometheus and M3, Uber’s storage costs for ingesting metrics became 8.53x more cost effective per metric per replica.

Read More