Detecting malaria with deep learning

Detecting malaria with deep learning

  • May 4, 2019
Table of Contents

Detecting malaria with deep learning

Artificial intelligence (AI) and open source tools, technologies, and frameworks are a powerful combination for improving society. ‘Health is wealth’ is perhaps a cliche, yet it’s very accurate! In this article, we will examine how AI can be leveraged for detecting the deadly disease malaria with a low-cost, effective, and accurate open source deep learning solution.

While I am neither a doctor nor a healthcare researcher and I’m nowhere near as qualified as they are, I am interested in applying AI to healthcare research. My intent in this article is to showcase how AI and open source solutions can help malaria detection and reduce manual labor. Thanks to the power of Python and deep learning frameworks like TensorFlow, we can build robust, scalable, and effective deep learning solutions.

Because these tools are free and open source, we can build solutions that are very cost-effective and easily adopted and used by anyone. Let’s get started! Malaria is a deadly, infectious, mosquito-borne disease caused by Plasmodium parasites that are transmitted by the bites of infected female Anopheles mosquitoes.

There are five parasites that cause malaria, but two types—P. falciparum and P. vivax—cause the majority of the cases.

Source: opensource.com

Tags :
Share :
comments powered by Disqus

Related Posts

Introducing Ludwig, a Code-Free Deep Learning Toolbox

Introducing Ludwig, a Code-Free Deep Learning Toolbox

Over the last decade, deep learning models have proven highly effective at performing a wide variety of machine learning tasks in vision, speech, and language. At Uber we are using these models for a variety of tasks, including customer support, object detection, improving maps, streamlining chat communications, forecasting, and preventing fraud. Many open source libraries, including TensorFlow, PyTorch, CNTK, MXNET, and Chainer, among others, have implemented the building blocks needed to build such models, allowing for faster and less error-prone development.

Read More
Machine Learning-Powered Search Ranking of Airbnb Experiences

Machine Learning-Powered Search Ranking of Airbnb Experiences

How we built and iterated on a machine learning Search Ranking platform for a new two-sided marketplace and how we helped itgrow. Airbnb Experiences are handcrafted activities designed and led by expert hosts that offer a unique taste of local scene and culture. Each experience is vetted for quality by a team of editors before it makes its way onto the platform.

Read More