Advancing state-of-the-art image recognition with deep learning on hashtags

Advancing state-of-the-art image recognition with deep learning on hashtags

  • May 4, 2018
Table of Contents

Advancing state-of-the-art image recognition with deep learning on hashtags

Image recognition is one of the pillars of AI research and an area of focus for Facebook. Our researchers and engineers aim to push the boundaries of computer vision and then apply that work to benefit people in the real world — for example, using AI to generate audio captions of photos for visually impaired users. In order to improve these computer vision systems and train them to consistently recognize and classify a wide range of objects, we need data sets with billions of images instead of just millions, as is common today.

Source: facebook.com

Share :
comments powered by Disqus

Related Posts

We Need Bug Bounties for Bad Algorithms

We Need Bug Bounties for Bad Algorithms

Algorithmic auditors are a growing discipline of researchers specializing in computer science and human-computer interaction. They employ a variety of methods to tinker with and uncover how algorithms work, and their research has already sparked public discussions and regulatory investigations into the most dominant and powerful algorithms of the Information Age. From Uber and Booking.com to Google and Facebook, to name a few, these friendly auditors already uncovered bias and deception in the algorithms that control our lives.

Read More
Embodied Question Answering: A goal-driven approach to autonomous agents

Embodied Question Answering: A goal-driven approach to autonomous agents

Facebook AI Research (FAIR) has developed a collection of virtual environments for training and testing autonomous agents, as well as novel AI agents that learn to intelligently explore those environments. To test this goal-driven approach, FAIR are collaborating Georgia Tech on a multistep AI task called Embodied Question Answering, or EmbodiedQA.

Read More