Cutting Edge Deep Learning for Coders, Part 2

Cutting Edge Deep Learning for Coders, Part 2

  • May 8, 2018
Table of Contents

Cutting Edge Deep Learning for Coders, Part 2

Welcome to the new 2018 edition of fast.ai’s second 7 week course, Cutting Edge Deep Learning For Coders, Part 2, where you’ll learn the latest developments in deep learning, how to read and implement new academic papers, and how to solve challenging end-to-end problems such as natural language translation. You’ll develop a deep understanding of neural network foundations, the most important recent advances in the fields, and how to implement them in the world’s fastest deep learning libraries, fastai and pytorch. This course contains all new material, so if you’ve already completed the 2017 version, you’ll find plenty here to keep you busy too!

Source: fast.ai

Tags :
Share :
comments powered by Disqus

Related Posts

The economics of artificial intelligence

The economics of artificial intelligence

When looking at artificial intelligence from the perspective of economics, we ask the same, single question that we ask with any technology: What does it reduce the cost of? Economists are good at taking the fun and wizardry out of technology and leaving us with this dry but illuminating question. The answer reveals why AI is so important relative to many other exciting technologies.

Read More
16-year-old on finding primes with neural networks

16-year-old on finding primes with neural networks

Inspired by the triumphs of the “AlphaGo” project by DeepMind, I focused my research into the extensions and optimisation techniques that are so common in neural network design. There are many useful packages in machine learning, such as tensor flow, which can generate complex neural networks which work well, very quickly, but for this project I really wanted to develop an understanding of the inner workings of modern neural networks. So I went through the arduous calculus myself giving a much less efficient but more rewarding program.

Read More
Embodied Question Answering: A goal-driven approach to autonomous agents

Embodied Question Answering: A goal-driven approach to autonomous agents

Facebook AI Research (FAIR) has developed a collection of virtual environments for training and testing autonomous agents, as well as novel AI agents that learn to intelligently explore those environments. To test this goal-driven approach, FAIR are collaborating Georgia Tech on a multistep AI task called Embodied Question Answering, or EmbodiedQA.

Read More