Creating a Zoo of Atari-Playing Agents to Catalyze the Understanding of Deep Reinforcement Learning

Creating a Zoo of Atari-Playing Agents to Catalyze the Understanding of Deep Reinforcement Learning

  • January 21, 2019
Table of Contents

Creating a Zoo of Atari-Playing Agents to Catalyze the Understanding of Deep Reinforcement Learning

Some of the most exciting advances in AI recently have come from the field of deep reinforcement learning (deep RL), where deep neural networks learn to perform complicated tasks from reward signals. RL operates similarly to how you might teach a dog to perform a new trick: treats are offered to reinforce improved behavior. Recently, deep RL agents have exceeded human performance in benchmarks like classic video games (such as Atari 2600 games), the board game Go, and modern computer games like DOTA 2.

One common setup (which our work targets) is for an algorithm to learn to play a single video game, learning only from raw pixels, guided by increases in the game score. Looking beyond video games, we believe RL has great potential for beneficial real-world applications. This is true both at Uber (for example, in improving Uber Eats recommendations or for applications in self-driving cars), and in business and society at large.

However, there is currently much more research focused on improving deep RL performance (e.g., how many points an agent receives in a game) than on understanding the agents trained by deep RL (e.g., whether slight changes in the game an agent is trained on will catastrophically confuse it). Understanding the agents we create helps us develop confidence and trust in them, which is needed before putting RL into sensitive real-world situations.

Source: uber.com

Tags :
Share :
comments powered by Disqus

Related Posts

Easy-To-Read Summary of Important AI Research Papers of 2018

Easy-To-Read Summary of Important AI Research Papers of 2018

Trying to keep up with AI research papers can feel like an exercise in futility given how quickly the industry moves. If you’re buried in papers to read that you haven’t quite gotten around to, you’re in luck. To help you catch up, we’ve summarized 10 important AI research papers from 2018 to give you a broad overview of machine learning advancements this year.

Read More
FastMRI open source tools from Facebook and NYU

FastMRI open source tools from Facebook and NYU

Facebook AI Research (FAIR) and NYU School of Medicine’s Center for Advanced Imaging Innovation and Research (CAI²R) are sharing new open source tools and data as part of fastMRI, a joint research project to spur development of AI systems to speed MRI scans by up to 10x. Today’s releases include new AI models and baselines for this task(as described in our paper here). It also includes the first large-scale MRI data set of its kind, which can serve as a benchmark for future research.

Read More
Using AI and satellite imagery for disaster insights

Using AI and satellite imagery for disaster insights

A framework for using convolutional neural networks (CNNs) on satellite imagery to identify the areas most severely affected by a disaster. This new method has the potential to produce more accurate information in far less time than current manual methods. Ultimately, the goal of this research is to allow rescue workers to quickly identify where aid is needed most, without relying on manually annotated, disaster-specific data sets.

Read More