Automating Datacenter Operations at Dropbox

Automating Datacenter Operations at Dropbox

  • January 23, 2019
Table of Contents

Automating Datacenter Operations at Dropbox

Switch provisioning at Dropbox is handled by a Pirlo component called the TOR Starter. The TOR Starter is responsible for validating and configuring switches in our datacenter server racks, PoP server racks, and at the different layers of our datacenter fabric that connect racks in the same facility together. Writing the TOR Starter on top of the ClusterOps queue provides us with a basic manager-worker queuing service.

We also have the ability to customize the queue to fit our needs in switch provisioning. The switch job table (shown below) is an extension of the basic job table. Similarly, the TOR Starter queue manager thread implementation is customized to queue switch jobs, and the TOR Starter worker implements all of the switch validation and provisioning logic.

Along with all of the switch job attributes, there are several tables that provide a comprehensive view of a switch job. As a switch job is running, the current state can be queried by a client and displayed in our user interface. After a switch job has completed, all of the job’s state is kept in the database and can be queried for reporting and analytics purposes.

Tables in the database also hold information related to each component in the switch such as its network uplinks, fans, and power supplies. All of the captured data from a switch is linked to a particular switch job.

Source: dropbox.com

Share :
comments powered by Disqus

Related Posts

Stack Overflow: How We Do Monitoring

Stack Overflow: How We Do Monitoring

What is monitoring? As far as I can tell, it means different things to different people. But we more or less agree on the concept.

Read More
Scaling Cash Payments in Uber Eats

Scaling Cash Payments in Uber Eats

This article is the fourth in a series covering how Uber’s mobile engineering team developed the newest version of our driver app, codenamed Carbon, a core component of our ridesharing business. Among other new features, the app lets our population of over three million driver-partners find fares, get directions, and track their earnings. We began designing the new app in conjunction with feedback from our driver-partners in 2017 and began rolling it out for production in September 2018.

Read More
Implementing the Netflix Media Database

Implementing the Netflix Media Database

In the previous blog posts in this series, we introduced the Netflix Media DataBase (NMDB) and its salient “Media Document” data model. In this post we will provide details of the NMDB system architecture beginning with the system requirements—these will serve as the necessary motivation for the architectural choices we made. A fundamental requirement for any lasting data system is that it should scale along with the growth of the business applications it wishes to serve.

Read More