A Chemist Shines Light on a Surprising Prime Number Pattern
About a year ago, the theoretical chemist Salvatore Torquato met with the number theorist Matthew de Courcy-Ireland to explain that he had done something highly unorthodox with prime numbers, those positive integers that are divisible only by 1 and themselves. Torquato told de Courcy-Ireland, a final-year graduate student at Princeton who had been recommended by another mathematician, that a year before, on a hunch, he had performed diffraction on sequences of prime numbers. Hoping to highlight the elusive order in the distribution of the primes, he and his student Ge Zhang had modeled them as a one-dimensional sequence of particles — essentially, little spheres that can scatter light.
In computer experiments, they bounced light off long prime sequences, such as the million-or-so primes starting from 10,000,000,019. (They found that this “Goldilocks interval” contains enough primes to produce a strong signal without their getting too sparse to reveal an interference pattern.) But in three new papers — one by Torquato, Zhang and the computational chemist Fausto Martelli that was published in the Journal of Physics A in February, and two others co-authored with de Courcy-Ireland that have not yet been peer-reviewed — the researchers report that the primes, like crystals and unlike liquids, produce a diffraction pattern.
Source: quantamagazine.org